


Vishay Semiconductors formerly General Semiconductor

# **Voltage Stabilizers**

**DO-204AH (DO-35 Glass)** 



### **Features**

- Temperature-Compensated Stabilizing Circuits
- Monolithic linear integrated circuits with extremely short thermal run-in time producing a constant temperature-compensated voltage. They are particularly suitable for stabilizing the tuning voltage in radio and TV tuners employing voltagevariable capacitance diodes.

### **Mechanical Data**

Case: DO-35 Glass Case Weight: approx. 0.13 g Packaging codes/options:

> D7/10K per 13" reel (52mm tape), 20K/box D8/10K per Ammo tape, (52mm tape), 20K/box

# Maximum Ratings (TA = 25°C unless otherwise noted)

| Parameter                                       | Symbol | Value       | Unit |
|-------------------------------------------------|--------|-------------|------|
| Operating Current (see Table "Characteristics") |        |             |      |
| Junction temperature                            | TJ     | 150         | °C   |
| Storage temperature range                       | Ts     | -20 to +150 | °C   |

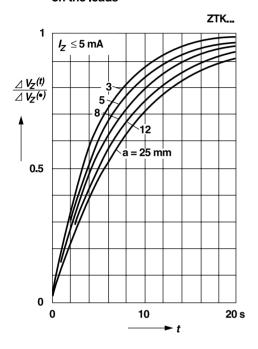
## Electrical and Thermal Characteristics (TA = 25°C unless otherwise noted)

| Parameter                                                                                                                                     | Symbol          | Min. | Тур.               | Max.  | Unit                 |
|-----------------------------------------------------------------------------------------------------------------------------------------------|-----------------|------|--------------------|-------|----------------------|
| Temperature Coefficient of the operating voltage at $Iz = 5 \text{ mA} \pm 0.5$ in the range of $T_{amb} = 20 \text{ to } 60^{\circ}\text{C}$ | $\alpha_{vz}$   | -10  | -2                 | +5(1) | 10 <sup>-5</sup> /°C |
| Thermal Run-in-Time                                                                                                                           | t <sub>th</sub> | _    | -20 <sup>(2)</sup> | _     | s                    |
| Thermal resistance junction to ambient air                                                                                                    | RθJA            | _    | _                  | 400   | °C/W                 |

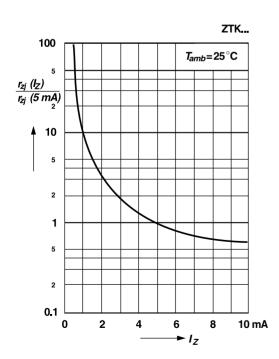
| Туре   | Operating Voltage<br>at I <sub>Z</sub> = 5mA <sup>(3)</sup><br>Vz (V) | Dynamic resistance<br>at I <sub>Z</sub> = 5mA<br>r <sub>zj</sub> (W) | Permissable operating<br>at T <sub>amb</sub> = 25∞C <sup>(4)</sup><br>Iz max. (mA) |
|--------|-----------------------------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------------------------------------|
|        |                                                                       |                                                                      | + ' '                                                                              |
| ZTK6.8 | 6.4 7.1                                                               | 10 (<25)                                                             | 36                                                                                 |
| ZTK9   | 8 10                                                                  | 10 (<25)                                                             | 27                                                                                 |
| ZTK11  | 10 12                                                                 | 10 (<25)                                                             | 1                                                                                  |
| ZTK18  | 16 20                                                                 | 11(<25)                                                              | 13                                                                                 |
| ZTK22  | 20 24                                                                 | 11(<25)                                                              | 1                                                                                  |
| ZTK27  | 24 30                                                                 | 12(<25)                                                              | 8                                                                                  |
| ZTK33A | 30 32                                                                 | 12(<25)                                                              | 7                                                                                  |
| ZTK33B | 32 34                                                                 | 12(<25)                                                              | 7                                                                                  |
| ZTK33C | 34 36                                                                 | 12(<25)                                                              | 7                                                                                  |

Notes: (1) Valid provided that leads are kept at ambient temperature at a distance of 8 mm from case

- (2) At the end of this time ΔVz has reached 90% of its final value ΔVz max. ΔVz max = Vz (a) Vz (0), where Vz (0) = Vz in the instant of turn-on and Vz (a) = Vz at thermal equilibrium
- (3) Tested with pulses  $t_p = 5ms$
- (4) Valid provided that leads are kept at ambient temperature at a distance of 8mm from case.

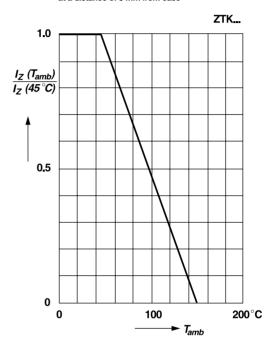

# ZTK6.8 thru ZTK33

# Vishay Semiconductors formerly General Semiconductor

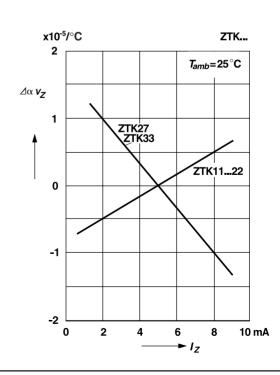

# Ratings and

Characteristic Curves (TA = 25°C unless otherwise noted)

Time dependence of  $\Delta V_Z$  after turn-on for different distances between case and point of ambient temperature on the leads




Dynamic resistance versus operating current




#### Permissible operating current versus ambient temperature

Valid provided that leads are kept at ambient temperature at a distance of 8 mm from case



Change of temperature coefficient versus operating current

