FEATURES

- HIGH SURGE CAPABILITY
- HIGH ON-STATE CURRENT
- HIGH STABILITY AND RELIABILITY
- BTW69 Serie :

INSULATED VOLTAGE $=2500 \mathrm{~V}_{(\text {(RMS })}$ (UL RECOGNIZED : E81734)

DESCRIPTION

The BTW 69 (N) Family of Silicon Controlled Rectifiers uses a high performance glass passivated technology.
This general purpose Family of Silicon Controlled Rectifiers is designed for power supplies up to 400 Hz on resistive or inductive load.

ABSOLUTE RATINGS (limiting values)

Symbol	Parameter			Value	Unit
IT(RMS)	RMS on-state current (180° conduction angle)	BTW 69 BTW 69 N	$\begin{aligned} & \mathrm{Tc}=70^{\circ} \mathrm{C} \\ & \mathrm{Tc}=75^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & 50 \\ & 55 \end{aligned}$	A
${ }^{\prime} \mathrm{T}(\mathrm{AV})$	Average on-state current $\left(180^{\circ}\right.$ conduction angle,single phase circuit)	BTW 69 BTW 69 N	$\begin{aligned} & \mathrm{Tc}=70^{\circ} \mathrm{C} \\ & \mathrm{Tc}=75^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & 32 \\ & 35 \end{aligned}$	A
ITSM	Non repetitive surge peak on-state current (Tj initial $=25^{\circ} \mathrm{C}$)		$\mathrm{tp}=8.3 \mathrm{~ms}$	525	A
			$\mathrm{tp}=10 \mathrm{~ms}$	500	
12 t	$12 t$ value		$\mathrm{tp}=10 \mathrm{~ms}$	1250	A2s
dl/dt	Critical rate of rise of on-state current Gate supply: $\mathrm{I}_{\mathrm{G}}=100 \mathrm{~mA} \mathrm{diG} / \mathrm{dt}=1 \mathrm{~A} / \mu \mathrm{s}$			100	$\mathrm{A} / \mu \mathrm{S}$
Tstg Tj	Storage and operating junction temperature range			$\begin{aligned} & -40 \text { to }+150 \\ & -40 \text { to }+125 \end{aligned}$	$\begin{aligned} & { }^{\circ} \mathrm{C} \\ & { }^{\circ} \mathrm{C} \end{aligned}$
TI	Maximum lead temperature for soldering during 10 s at 4.5 mm from case			230	${ }^{\circ} \mathrm{C}$

Symbol	Parameter	BTW 69		BTW 69 / BTW 69 N				Unit
		200	400	600	800	1000	1200	
$\mathrm{V}_{\text {DRM }}$ $V_{\text {RRM }}$	Repetitive peak off-state voltage $\mathrm{Tj}=125^{\circ} \mathrm{C}$	200	400	600	800	1000	1200	V

THERMAL RESISTANCES

Symbol	Parameter		Value	Unit
Rth (j-a)	Junction to ambient		50	
Rth (j-c) DC	Junction to case for DC	BTW 69	0.9	${ }^{\circ} \mathrm{C} / \mathrm{W}$
		C / W		
			0.8	

GATE CHARACTERISTICS (maximum values)
$\mathrm{P}_{\mathrm{G}}(\mathrm{AV})=1 \mathrm{~W} \quad \mathrm{P}_{\mathrm{GM}}=40 \mathrm{~W}(\mathrm{tp}=20 \mu \mathrm{~s}) \quad \mathrm{IFGM}=8 \mathrm{~A}(\mathrm{tp}=20 \mu \mathrm{~s}) \quad \mathrm{V}_{\mathrm{RGM}}=5 \mathrm{~V}$.

ELECTRICAL CHARACTERISTICS

Symbol	Test Conditions					Value		Unit
						BTW 69	BTW 69 N	
I_{GT}	$\mathrm{V}_{\mathrm{D}}=12 \mathrm{~V}$ (DC) $\mathrm{R}_{\mathrm{L}}=33 \Omega$			Tj $=25^{\circ} \mathrm{C}$	MAX		80	mA
V_{GT}	$\mathrm{V}_{\mathrm{D}}=12 \mathrm{~V}$ (DC) $\mathrm{R}_{\mathrm{L}}=33 \Omega$			$\mathrm{Tj}=25^{\circ} \mathrm{C}$	MAX		. 5	V
V_{GD}	$\mathrm{V}_{\mathrm{D}}=\mathrm{V}_{\text {DRM }} \mathrm{R}_{\mathrm{L}}=3.3 \mathrm{k} \Omega$			$\mathrm{Tj}=125^{\circ} \mathrm{C}$	MIN		. 2	V
tgt	$\begin{aligned} & \mathrm{V}_{\mathrm{D}}=\mathrm{V}_{\mathrm{DRM}} \quad \mathrm{I}_{\mathrm{G}}=200 \mathrm{~mA} \\ & \mathrm{dlG}_{\mathrm{G}} / \mathrm{dt}=1.5 \mathrm{~A} / \mu \mathrm{s} \end{aligned}$			$\mathrm{Tj}=25^{\circ} \mathrm{C}$	TYP		2	$\mu \mathrm{s}$
IL	$\mathrm{I}_{\mathrm{G}}=1.2 \mathrm{IGT}$			Tj $=25^{\circ} \mathrm{C}$	TYP		50	mA
$\mathrm{IH}^{\text {l }}$	$\mathrm{I} T=500 \mathrm{~mA}$ gate open			$\mathrm{Tj}=25^{\circ} \mathrm{C}$	MAX		50	mA
$\mathrm{V}_{\text {TM }}$	$\begin{array}{ll}\text { BTW } 69 \text { ITM }=100 \mathrm{~A} \\ \text { BTW } 69 \mathrm{~N} \\ \text { ITM } & =110 \mathrm{~A} \quad \mathrm{tp}=380 \mu \mathrm{~s}\end{array}$			$\mathrm{Tj}=25^{\circ} \mathrm{C}$	MAX	1.9	2.0	V
IDRM IRRM	$\begin{array}{cl}\text { V DRM }^{\text {Rated }} \\ \text { VRRM } & \text { Rated }\end{array}$ VRRM Rated			$\mathrm{Tj}=25^{\circ} \mathrm{C}$	MAX	0.02		mA
				$\mathrm{Tj}=125^{\circ} \mathrm{C}$			6	
dV/dt	Linear slope up to $\mathrm{V}_{\mathrm{D}}=67 \% \mathrm{~V}_{\text {DRM }}$ gate open		$\mathrm{V}_{\mathrm{DRM}} \leq 800 \mathrm{~V}$ $V_{D R M} \geq 1000 \mathrm{~V}$	$\mathrm{Tj}=125^{\circ} \mathrm{C}$	MIN		50	V/us
tq	$\begin{array}{lcc} \mathrm{V}_{\mathrm{D}}=67 \% \mathrm{~V}_{\mathrm{DRM}} & I_{T M}=110 \mathrm{~A} & \mathrm{~V}_{\mathrm{R}}=75 \mathrm{~V} \\ \mathrm{~d} \mathrm{l}_{\mathrm{TM}} / \mathrm{dt}=30 \mathrm{~A} / \mu \mathrm{s} & \mathrm{dV} \mathrm{~V}_{\mathrm{D}} / \mathrm{dt}=20 \mathrm{~V} / \mu \mathrm{s} \end{array}$			$\mathrm{Tj}=125^{\circ} \mathrm{C}$	TYP		00	$\mu \mathrm{s}$

Package	IT(RMS)	VDRM / VRRM	Sensitivity Specification
	A	V	BTW
BTW 69 (Insulated)	50	200	X
		400	X
		600	X
		800	X
		1000	X
		1200	X
BTW 69 N (Uninsulated)	55	600	X
		800	X
		1000	X
		1200	X

Fig. 1 : Maximum average power dissipation versus average on-state current (BTW 69).

Fig. 3 : Maximum average power dissipation versus average on-state current (BTW 69 N).

Fig. 2 : Correlation between maximum average power dissipation and maximum allowable temperatures ($\mathrm{T}_{\mathrm{amb}}$ and $T_{\text {case }}$) for different thermal resistances heatsink + contact (BTW 69).

Fig. 4 : Correlation between maximum average power dissipation and maximum allowable temperatures ($\mathrm{T}_{\mathrm{amb}}$ and $T_{\text {case }}$) for different thermal resistances heatsink + contact (BTW 69 N).

Fig. 5 : Average on-state current versus case temperature (BTW 69).

Fig. 7 : Relative variation of thermal impedance versus pulse duration.

Fig. 9 : Non repetitive surge peak on-state current versus number of cycles.

Fig. 6 : Average on-state current versus case temperature (BTW 69 N).

Fig. 8 : Relative variation of gate trigger current versus junction temperature.

$$
\frac{\operatorname{lgt}\left[T_{j}\right]}{\lg t\left|T j=25^{\circ} C\right|} \quad \cdot \frac{\ln \left[T_{j}\right]}{\ln \left[T_{j} j 5^{\circ} \mathrm{C}\right]}
$$

Fig. 10 : Non repetitive surge peak on-state current for a sinusoidal pulse with width: $\mathrm{t} \leq 10 \mathrm{~ms}$, and corresponding value of R 2 t .

Fig11: On-state characteristics (maximum values).
${ }^{1}$ TM ${ }^{(A)}$

PACKAGE MECHANICAL DATA

TOP 3 Plastic
(

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsability for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied.
SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectronics.
(c) 1995 SGS-THOMSON Microelectronics - Printed in Italy - All rights reserved.

SGS-THOMSON Microelectronics GROUP OF COMPANIES
Australia - Brazil - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A.

