Panasonic

FEATURES

1. Approved to the supplementary insulation class in the EN standards (EN60950).
The insulation distance between the contact and coil meet the supplementary insulation class of the EN60950 standards as required for equipment connected to the telephone lines in Europe.
Satisfies the following conditions:

- Clearances: 2.0 mm . 079 inch or more
- Creepage distance: 2.5 mm .098 inch or more

2. 3,000 V breakdown voltage between contact and coil. (Surge breakdown voltage $6,000 \mathrm{~V}$ type)
The body block construction of the coil that is sealed formation offers a high breakdown voltage of $3,000 \mathrm{~V}$ between contact and coil.
3. Nominal operating power:

High sensitivity of $\mathbf{2 0 0} \mathbf{~ m W}$
By using the highly efficient polar magnetic circuit "seesaw balance mechanism", a nominal operating power of 200 mW has been achieved.
4. High contact capacity: 2 A 30 V DC
5. High contact reliability achieved with gold-clad crossbar twin contacts and the use of gas expelling materials during formation.
*We also offer TX-series relays with AgPd contacts, suitable for use in low level load analog circuits.
6. Outstanding vibration and shock resistance.
Functional shock resistance: $750 \mathrm{~m} / \mathrm{s}^{2}$
Destructive shock resistance:
$1,000 \mathrm{~m} / \mathrm{s}^{2}$
Functional vibration resistance:
10 to 55 Hz (at double amplitude of
3.3 mm .130 inch)

Destructive vibration resistance: 10 to 55 Hz (at double amplitude of 5 mm .197 inch)
7. Sealed construction allows automatic washing.

TYPICAL APPLICATIONS

1. Facsimile
2. Modem
3. Communications (xDSL)
4. Medical equipment
5. Security

ORDERING INFORMATION

[^0]
TX－D

TYPES

1．Standard（B．B．M．）type
1）Standard PC board terminal

Contact arrangement	Nominal coil	Single side stable	1 coil latching
	voltage	Part No．	Part No．
2 Form C	1．5V DC	TXD2－1．5V	TXD2－L－1．5V
	3V DC	TXD2－3V	TXD2－L－3V
	4.5 V DC	TXD2－4．5V	TXD2－L－4．5V
	5 V DC	TXD2－5V	TXD2－L－5V
	6V DC	TXD2－6V	TXD2－L－6V
	9V DC	TXD2－9V	TXD2－L－9V
	12 V DC	TXD2－12V	TXD2－L－12V
	24V DC	TXD2－24V	TXD2－L－24V

Standard packing：Tube： 40 pcs．；Case：1，000 pcs．
Note：Please add＂-1 ＂to the end of the part number for AgPd contacts（low level load）．

2）Surface－mount terminal

（1）Tube packing

Contact arrangement	Nominal coil	Single side stable	1 coil latching
	voltage	Part No．	Part No．
2 Form C	1.5 V DC	TXD2SD－1．5V	TXD2SD－L－1．5V
	3V DC	TXD2SD－3V	TXD2SD－L－3V
	4.5 V DC	TXD2SD－4．5V	TXD2SD－L－4．5V
	5V DC	TXD2SD－5V	TXD2SD－L－5V
	6V DC	TXD2Sロ－6V	TXD2SD－L－6V
	9V DC	TXD2S】－9V	TXD2SD－L－9V
	12V DC	TXD2S】－12V	TXD2SD－L－12V
	24 V DC	TXD2S－24V	TXD2SD－L－24V

I：For each surface－mount terminal identification，input the following letter．SA type：\underline{A}, SS type：\underline{S}
Standard packing：Tube： 40 pcs．；Case：1，000 pcs．
Note：Please add＂－1＂to the end of the part number for AgPd contacts（low level load）．
（2）Tape and reel packing

Contact arrangement	Nominal coil voltage	Single side stable	1 coil latching
		Part No．	Part No．
2 Form C	1.5 V DC	TXD2SD－1．5V－Z	TXD2SD－L－1．5V－Z
	3V DC	TXD2SD－3V－Z	TXD2SD－L－3V－Z
	4.5 V DC	TXD2SD－4．5V－Z	TXD2SD－L－4．5V－Z
	5V DC	TXD2SD－5V－Z	TXD2SD－L－5V－Z
	6V DC	TXD2SD－6V－Z	TXD2SD－L－6V－Z
	9V DC	TXD2SD－9V－Z	TXD2SD－L－9V－Z
	12 V DC	TXD2SD－12V－Z	TXD2SD－L－12V－Z
	24V DC	TXD2SD－24V－Z	TXD2SD－L－24V－Z

－．For each surface－mount terminal identification，input the following letter．SA type：\underline{A}, SS type：\underline{S}
Standard packing：Tape and reel： 500 pcs．；Case：1，000 pcs．
Notes：1．Tape and reel packing symbol＂$-Z$＂is not marked on the relay．＂X＂type tape and reel packing（picked from 1／3／4／5－pin side）is also available．
2．Please add＂-1 ＂to the part number for AgPd contacts（low level load）．（Ex．TXD2SA－1．5V－1－Z）

2. M.B.B type

1) Standard PC board terminal

Contact arrangement	Nominal coil voltage	Single side stable
		Part No.
2 Form C	1.5 V DC	TXD2-2M-1.5V
	3V DC	TXD2-2M-3V
	4.5V DC	TXD2-2M-4.5V
	5V DC	TXD2-2M-5V
	6V DC	TXD2-2M-6V
	9V DC	TXD2-2M-9V
	12 V DC	TXD2-2M-12V
	24V DC	TXD2-2M-24V

Standard packing: Tube: 40 pcs.; Case: 1,000 pcs.
2) Surface-mount terminal
(1) Tube packing

Contact arrangement	Nominal coil voltage	Single side stable
		Part No.
2 Form C	1.5 V DC	TXD2SD-2M-1.5V
	3V DC	TXD2SD-2M-3V
	4.5 V DC	TXD2SD-2M-4.5V
	5V DC	TXD2SD-2M-5V
	6V DC	TXD2SD-2M-6V
	9V DC	TXD2SD-2M-9V
	12 V D	TXD2SD-2M-12V
	24V DC	TXD2SD-2M-24V

ㅁ: For each surface-mount terminal identification, input the following letter. SA type: \underline{A}, SS type: \underline{S}
Standard packing: Tube: 40 pcs.; Case: 1,000 pcs.
(2) Tape and reel packing

Contact arrangement	Nominal coil voltage	Single side stable
		Part No.
2 Form C	1.5V DC	TXD2SD-2M-1.5V-Z
	3V DC	TXD2SD-2M-3V-Z
	4.5 V DC	TXD2SD-2M-4.5V-Z
	5V DC	TXD2SD-2M-5V-Z
	6V DC	TXD2SD-2M-6V-Z
	9V DC	TXD2SD-2M-9V-Z
	12 V DC	TXD2Sロ-2M-12V-Z
	24V DC	TXD2SD-2M-24V-Z

ㅁ: For each surface-mount terminal identification, input the following letter. SA type: \underline{A}, SS type: \underline{S}
Standard packing: Tape and reel: 500 pcs.; Case: 1,000 pcs.
Notes: 1. Types designed to withstand strong vibration caused, for example, by the use of terminal cutters, can also be ordered.
However, please contact us if you need parts for use in low level load. (Ex. TXD2SA-2M-1.5V-1-Z)
2. Tape and reel packing symbol "- Z " is not marked on the relay. " X " type tape and reel packing (picked from $1 / 3 / 4 / 5$-pin side) is also available.

TX-D

RATING

1. Coil data
[Standard (B.B.M.) type]
1) Single side stable

Nominal coil voltage	Pick-up voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Drop-out voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Nominal operating current [$\pm 10 \%$] (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	$\begin{gathered} \text { Coil resistance } \\ {[\pm 10 \%]\left(\text { at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}\right)} \\ \hline \end{gathered}$	Nominal operating power	Max. applied voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)
1.5 V DC	$75 \% \mathrm{~V}$ or less of nominal voltage* (Initial)	$10 \% \mathrm{~V}$ or more of nominal voltage* (Initial)	132.7 mA	11Ω	200 mW	$120 \% \mathrm{~V}$ of nominal voltage
3V DC			66.7 mA	45Ω		
4.5V DC			44.4 mA	101Ω		
5V DC			40.0 mA	125Ω		
6V DC			33.3 mA	180Ω		
9V DC			22.2 mA	405Ω		
12 V DC			16.7 mA	720Ω		
24V DC			9.6 mA	2,504 Ω	230 mW	

2) 1 coil latching

Nominal coil voltage	$\begin{gathered} \text { Set voltage } \\ \text { (at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F} \text {) } \\ \hline \end{gathered}$	Reset voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Nominal operating current [$\pm 10 \%$] (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Coil resistance $[\pm 10 \%]\left(\text { at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}\right)$	Nominal operating power	Max. applied voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)
1.5 V DC	$75 \% \mathrm{~V}$ or less of nominal voltage* (Initial)	$75 \% \mathrm{~V}$ or less of nominal voltage* (Initial)	100.0 mA	15Ω	150 mW	$120 \% \mathrm{~V}$ of nominal voltage
3V DC			50.0 mA	60Ω		
4.5 V DC			33.3 mA	135Ω		
5V DC			30.0 mA	166Ω		
6V DC			25.0 mA	240Ω		
9V DC			16.7 mA	540Ω		
12 V D			12.5 mA	960Ω		
24 V DC			7.1 mA	3,388 Ω	170 mW	

[M.B.B. type]

Nominal coil voltage	Pick-up voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Drop-out voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Nominal operating current $\left[\pm 10 \%\right.$] (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	$\begin{gathered} \text { Coil resistance } \\ {[\pm 10 \%]\left(\text { at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}\right)} \\ \hline \end{gathered}$	Nominal operating power	Max. applied voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)
1.5 V DC	$75 \% \mathrm{~V}$ or less of nominal voltage* (Initial)	$10 \% \mathrm{~V}$ or more of nominal voltage* (Initial)	166.7 mA	9Ω	250 mW	$120 \% \mathrm{~V}$ of nominal voltage
3V DC			83.3 mA	36Ω		
4.5V DC			55.6 mA	81Ω		
5V DC			50.0 mA	100Ω		
6V DC			41.7 mA	144Ω		
9V DC			27.8 mA	324Ω		
12 V DC			20.8 mA	576Ω		
24V DC			11.3 mA	2,133	270mW	

*Pulse drive (JIS C 5442-1986)
*Only for surge breakdown voltage of $2,500 \mathrm{~V}$.

2. Specifications

Characteristics	Item		Specifications	
Contact	Arrangement		2 Form C	2 Form D (M.B.B.type)
	Contact resistance (Initial)		Max. $100 \mathrm{~m} \Omega$ (By voltage drop 6 V DC 1A)	
	Contact material		Standard contact: Ag+Au clad, AgPd contact (low level load): AgPd+Au clad (stationary), AgPd (movable)	
Rating	Nominal switching capacity		Standard contact: 2 A 30 V DC, AgPd contact: 1 A 30 V DC (resistive load)	1 A 30 V DC (resistive load)
	Max. switching power		Standard contact: 60 W (DC), AgPd contact: 30 W (DC) (resistive load)	30 W (DC) (resistive load)
	Max. switching voltage		220 V DC	110 V DC
	Max. switching current		Standard contact: 2 A, AgPd contact: 1 A	1 A
	Min. switching capacity (Reference value) ${ }^{-1}$		$10 \mu \mathrm{~A} 10 \mathrm{mV} \mathrm{DC}$	
	Nominal operating power	Single side stable	200 mW (1.5 to 12 V DC), 230 mW (24 V DC)	250 mW (1.5 to 12 V DC), 270 mW (24 V DC)
		1 coil latching	150 mW (1.5 to 12 V DC), 170 mW (24 V DC)	-
Electrical characteristics	Insulation resistance (Initial)		Min. 1,000M (at 500V DC) Measurement at same location as "Initial breakdown voltage" section.	
	Breakdown voltage (Initial)	Between open contacts	$1,000 \mathrm{Vrms}$ for 1 min . (Detection current: 10 mA)	500 Vrms for 1 min . (Detection current: 10 mA)
		Between contact and coil	3,000 Vrms for 1min. (Detection current: 10 mA)	$3,000 \mathrm{Vrms}$ for 1 min . (Detection current: 10 mA)
		Between contact sets	1,000 Vrms for 1 min . (Dis	tection current: 10 mA)
	Surge breakdown voltage (Initial)	Between open contacts	$1,500 \mathrm{~V}(10 \times 160 \mu \mathrm{~s})$ (FCC Part 68)	-
		Between contacts and coil ${ }^{\star 1}$	6,000 V, $1.2 \times 50 \mu \mathrm{~s}$	
	Temperature rise (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)		$\text { Max. } 50^{\circ} \mathrm{C} 122^{\circ} \mathrm{F}$ (By resistive method, nominal coil voltage applied to the coil; contact carrying current: 2A [1A: M.B.B.].)	
	Operate time [Set time] (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)		Max. 4 ms [Max. 4 ms] (Nominal coil voltage applied to the coil, excluding contact bounce time.)	
	Release time [Reset time] (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)		Max. 4 ms [Max. 4 ms] (Nominal coil voltage applied to the coil, excluding contact bounce time.) (without diode)	
Mechanical characteristics	Shock resistance	Functional	Min. $750 \mathrm{~m} / \mathrm{s}^{2}$ (Half-wave pulse of sine wave: 6 ms ; detection time: $10 \mu \mathrm{~s}$.)	Min. $500 \mathrm{~m} / \mathrm{s}^{2}$ (Half-wave pulse of sine wave: 11 ms ; detection time: $10 \mu \mathrm{~s}$.)
		Destructive	Min. $1,000 \mathrm{~m} / \mathrm{s}^{2}\{100 \mathrm{G}\}$ (Half-wave pulse of sine wave: 6 ms .)	
	Vibration resistance	Functional	10 to 55 Hz at double amplitude of 3.3 mm (Detection time: $10 \mu \mathrm{~s}$.)	
		Destructive	10 to 55 Hz at double amplitude of 5 mm	
Expected life	Mechanical		Min. 10^{8} (at 180 cpm)	Min. 10^{7} (at 180 cpm)
	Electrical		Min. 10^{5} (2 A 30 V DC resistive), Min. 5×10^{5} (1 A 30 V DC resistive) (at 20 cpm)	Min. 10^{5} (1 A 30 V DC resistive) (at 20 cpm)
Conditions	Conditions for operation, transport and storage" ${ }^{2}$		Ambient temperature: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}-40^{\circ} \mathrm{F}$ to $+185^{\circ} \mathrm{F}$; Humidity: 5 to 85% R.H. (Not freezing and condensing at low temperature)	
	Max. operating speed (at rated load)		20 cpm	
Unit weight			Approx. 2 g .071 oz	

*1 This value can change due to the switching frequency, environmental conditions, and desired reliability level, therefore it is recommended to check this with the actual load. (AgPd contact type is available for low level load switching.)
*2 The upper operation ambient temperature limit is the maximum temperature that can satisfy the coil temperature rise value. Refer to " 6 . Usage, Storage and Transport Conditions" in AMBIENT ENVIRONMENT section in Relay Technical Information.

REFERENCE DATA

1. Maximum switching capacity

2. Life curve

3. Mechanical life

Tested sample: TXD2-5V, 10 pcs.
Operating speed: 180 cpm

4. Electrical life (2 A 30 V DC resistive load)

Tested sample: TXD2-5V, 6 pcs.
Operating speed: 20 cpm
Change of pick-up and drop-out voltage

5-(2). Coil temperature rise
Tested sample: TXD2-24V, 6 pcs
Measured portion: Inside the coil
Ambient temperature: $25^{\circ} \mathrm{C} 77^{\circ} \mathrm{F}, 70^{\circ} \mathrm{C} 158^{\circ} \mathrm{F}$

7. Ambient temperature characteristics

Tested sample: TXD2-5V, 5 pcs.

10. Malfunctional shock (single side stable) Tested sample: TXD2-5V, 6 pcs

5-(1). Coil temperature rise
Tested sample: TXD2-5V, 6 pcs.
Measured portion: Inside the coil
Ambient temperature: $25^{\circ} \mathrm{C} 77^{\circ} \mathrm{F}, 70^{\circ} \mathrm{C} 158^{\circ} \mathrm{F}$

6-(2). Operate/release time characteristics (without diode)
Tested sample: TXD2-5V, 10 pcs.

9. High-frequency characteristics (Insertion loss)
Tested sample: TXD2-12V, 2 pcs.

11-(2). Influence of adjacent mounting Tested sample: TXD2-12V, 6 pcs.

12. Actual load test (35 mA 48 V DC wire spring
relay load)
Tested sample: TXD2-5V, 6 pcs.

Circuit

Change of pick-up and drop-out voltage

Change of contact resistance

13-(1). Distribution of M.B.B. time
Tested sample: TXD2-2M-5V, 50 pcs.

Terminal No. 3-4-5: ON

13-(2). Distribution of M.B.B. time
Tested sample: TXD2-2M-5V, 50 pcs.
Terminal No. 8-9-10: ON

Terminal No. 3-4-5: OFF

14. Surge breakdown voltage test Tested sample: TXD2-3V-6, 30 pcs.

Download CAD Data from our Web site.

1) Standard PC board terminal

2) Surface-mount terminal

CAD Data

Schematic (Top view)

Single side stable

(Deenergized condition)

1 coil latching

(Reset condition)

NOTES

1. Packing style

1) Tube packing

The relay is packed in a tube with the relay orientation mark on the left side, as shown in the figure below.

2) Tape and reel packing (surface-mount terminal type)
(1) Tape dimensions
(i) SA type
mm inch

Tape coming out direction
(ii) SS type

(2) Dimensions of plastic reel

3) Ambient temperature when transporting and during storage with the product in its original packaging:
-40 to $+70^{\circ} \mathrm{C}-40$ to $+158^{\circ} \mathrm{F}$

2. Automatic insertion

To maintain the internal function of the relay, the chucking pressure should not exceed the values below.

Chucking pressure in the direction A:
$4.9 \mathrm{~N}\{500 \mathrm{gf}\}$ or less
Chucking pressure in the direction B:
$9.8 \mathrm{~N}\{1 \mathrm{kgf}\}$ or less
Chucking pressure in the direction C :
$9.8 \mathrm{~N}\{1 \mathrm{kgf}\}$ or less
Please chuck the \square portion.

Avoid chucking the center of the relay. In addition, excessive chucking pressure to the pinpoint of the relay should be avoided.
3. M.B.B. type

A small OFF time may be generated by the contact bounce during contact switching. Check the actual circuit carefully.
If the relay is dropped accidentally, check the appearance and characteristics including M.B.B. time before use.

Measuring condition of M.B.B. time

For Cautions for Use, see Relay Technical Information.

[^0]: Note: In case of 5 V transistor drive circuit, it is recommended to use 4.5 V type relay.

