

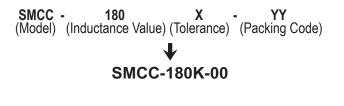
Leaded Inductors (Fixed Choke Coils)

FASTRON leaded inductors come with a very wide inductance range from 0.1µH to 100 000µH and with high Q values. They are available in tape and ammopack packing.

 Applications
 These components are suitable for decoupling and interference suppression.

 Communication: RF blocking and filtering, e.g. 12 ~ 16 kHz blocking filter
 Others: Automotive electronics, electronic household appliances, entertainment electronics and lighting devices

Technical Data


L – Value (rated inductance)	Measured with HP 4194A Impedance / Gain-phase Analyzer at frequency fL				
Q – Factor (min)	Measured with HP 4194A Impedance / Gain-phase Analyzer at frequency f_Q				
SRF (min)	Measured with HP 8753ES Network Analyzer				
DCR (max)	Measured at 25°C				
Rated DC Current	I based on temperature rise, determined at the point where the temperature rise does not exceed				
	40°C above the ambient temperature of 25°C				
	I1 Current based on ambient temperature of 40°C and component temperature of max. 125°C				
	Isat Current based on inductivity drop of 10% related to the unloaded inductivity				
Operating Temperature	-55°C to +125°C (includes component self-heating)				
Recommended soldering method	Wave				
Solderability	Using lead free solder (Sn 99.9) at 260°C ± 5°C for 5 ± 0.5 seconds, min 90% solder coverage of				
	metallization				
	Standard: IEC 68-2-20 (Ta)				
Resistance to Soldering Heat	Resistant to 260°C ± 5°C for 10 ± 1 seconds				
	Standard: IEC 68-2-20 (Tb)				
Resistance to Solvent	Resistant to Isopropyl alcohol for 5 ± 0.5 minutes at 23°C ± 5°C				
	Standard: IEC 68-2-45				
Climatic Test	Defined by the following standards				
	IEC 68-2-1 for Cold test: -55°C for 96 hours				
	IEC 68-2-2 for Dry heat test: +125°C for 96 hours				
	IEC 60068-2-78 for Humidity test: 40°C at RH 95% for 4 days				
Thermal Shock Test	Temperature cycle : -55°C to +125°C to -55°C				
	Max/Min temperature duration: 15 minutes				
	Temperature transition duration: 5 minutes				
	Cycles: 25				
	Standard: MIL-STD-202G				
Tensile Strength of Leads	Components withstand a pulling force of 10N for 10 ± 1 seconds				
(Pull Test)	IEC 60068-2-21 (Ua ₁)				
Mechanical Shock	Mil-Std 202 Method 213				
	Condition C				
	3 axis, 6 times, total 18 shocks				
	100 G, 6 ms, half-sine				
Vibration	Mil-Std 202 Method 204				
	20 mins at 5G				
	10 Hz to 2000 Hz				
	12 cycles each of 3 orientations				

Colour Coding

L (μH)	Nominal Inductance (µH)			Tol. **	
Code	Band 1	Band 2	Band 3	Band 4	code
Gold			x 0.1	± 5%	J
Silver			x0.01	± 10 %	Κ
Clear				± 20 %	М
Black	0	0	x1		
Brown	1	1	x10	±1%	F
Red	2	2	x100	±2%	G
Orange	3	3	x1000	±3%	А
Yellow	4	4			
Green	5	5			
Blue	6	6			
Violet	7	7			
Grey	8	8			
White	9	9			

Ordering Code

Example: SMCC-180X-YY

Core Type	- Ferrite
Tolerances	- F (1%), G (2%), H (2.5%), A (3%), J (5%), K (10%), M (20%)
	- Bold is standard tolerence
Packing Code	- 00 (Loose in Box), 01, 02, 31, 51 (Reel), 02 (Ammopack – axial), 32 (Ammopack – radial)

_

Packing Specification Fig. 1: On Reel (Plastic) Packing code : 01, 31, 51

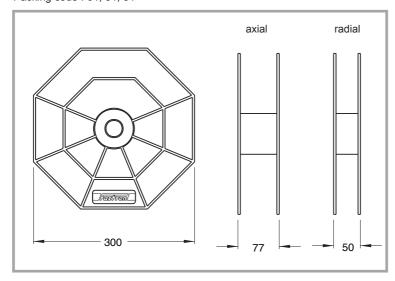


Fig. 3: Axial Standard Taping (65mm) Packing code : 01, 02

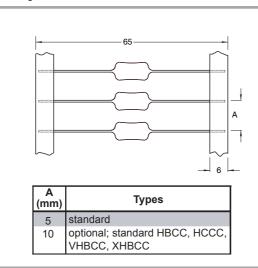


Fig. 5: Radial Taping Packing code : 31, 32

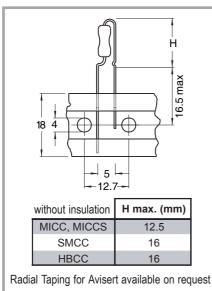


Fig. 2: Ammopack, axial Packing code : 02

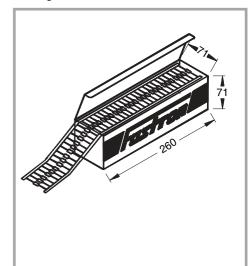


Fig. 4: Axial Narrow Taping (38mm)

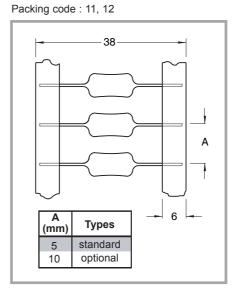
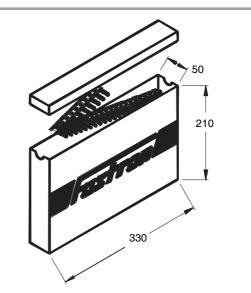



Fig. 6: Ammopack, radial Packing code : 32

Packing Specification Fig. 7: Axial, loose form Packing code : 00

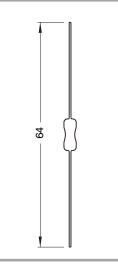


Fig. 8: Axial preformed Packing code : 20

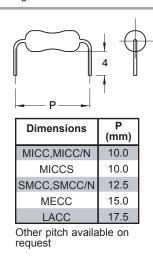


Fig. 9: Radial, (with kink) loose form Packing code : 40

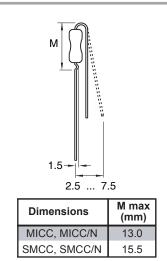
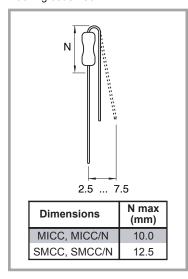



Fig. 10: Radial, (without kink) loose form Packing code : 50

